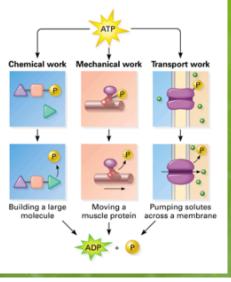

Name:	Date:	Block:

Guided Notes Unit 3: Matter and Energy

Chapter 4: Cells and Energy

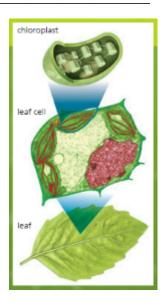

- I. Concept 4.1: Chemical Energy and ATP
 - a. ATP Holds Energy
 - i. ATP =_____ ii.
 - iii. When a phosphate group breaks off of ATP, energy is released. (ATP becomes ADP (Adenosine

b. The ATP Cycle

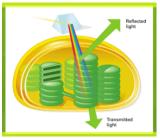
- c. ATP and Cellular Work
 - i. Three types of cellular work that ATP helps with:
 - 1. _____
 - 2. _____
 - 3. _____

i. ii. These organic molecules are used to _____ Sun Light energy Photosynthesis ORGANIC MOLECULE Glucose Oxyge Carbon Wate dioxide (chemical energy) Cellular respiration SUNLIGH aht enera Chemical energy stored in ATP

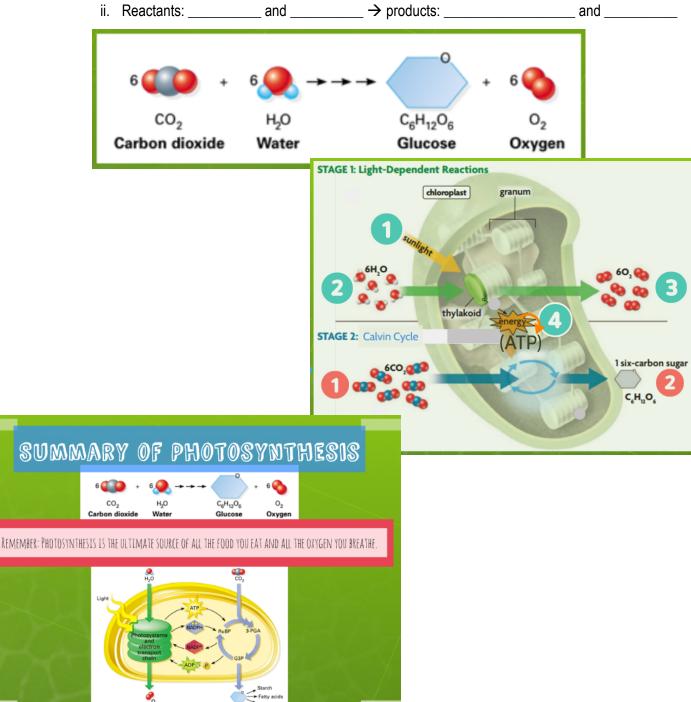
II. Concept 4.2: Photosynthesis


- a. Producers
 - i. _____
 - ii. Producers produce the source of chemical energy for _____

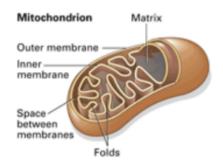
b. Chloroplasts


i. Chloroplast:

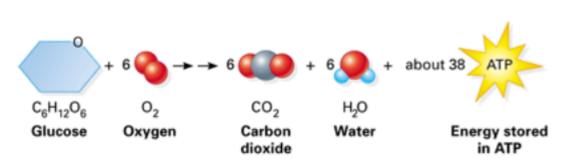
d. Photosynthesis and Cellular Respiration


- ii. Chlorophyll: chemical compound that _____
 - (A plant's leaves have the most photosynthesis occurring therefore, leaves are usually always green.)
- iii. Stomata: part of the leaf where ______ (how they get to the chloroplast for photosynthesis)
- c. Light Energy and Pigments
 - i. Sunlight = electromagnetic energy (travels in waves)
 - ii. Wavelength: length between each wave of electromagnetic energy; determines different types of electromagnetic energy

- d. Pigments and Color

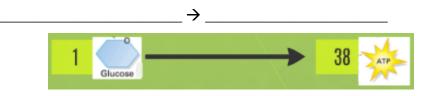


- Leaf chloroplasts absorb blue-violet and red-orange light. They do not absorb green it is transmitted or reflected.
- e. Overview of Photosynthesis
 - i. Photosynthesis is almost the complete opposite of cellular respiration

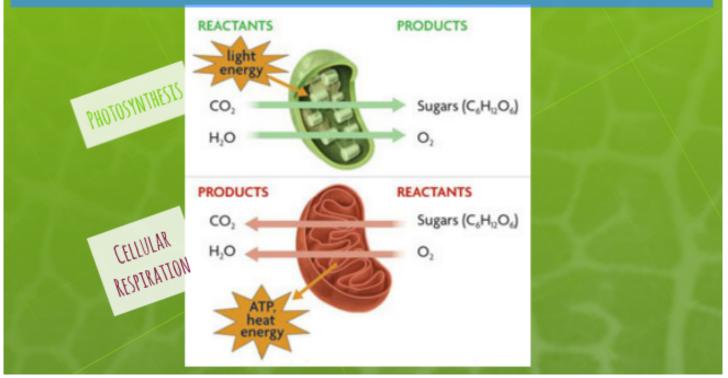


III. Concept 4.4: Cellular Respiration

- a. Mitochondria
 - i. Found in almost all ______ cells
 - ii. Where ______ takes place
 - iii. Makes _____



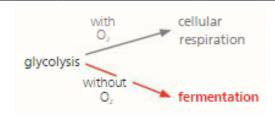
- b. Overall Equation for Cellular Respiration
 - i. Glucose (sugar) = _____
 - ii. _____ ATP molecules are produced from each glucose molecule through cellular respiration.
- c. Overview of Cellular Respiration
 - i. Metabolism:


- ii. Therefore, cellular respiration is considered to be a "metabolic pathway."
- d. Adding up the ATP Molecules

i.

e. Comparing Cellular Respiration to Photosynthesis

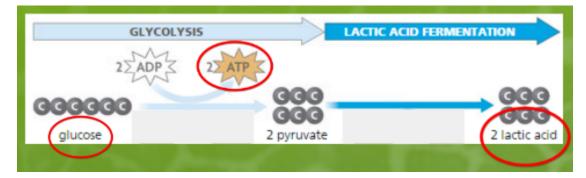
COMPARING GELLULAR RESPIRATION TO PHOTOSYNTHESIS


	FIGURE 5.5 PHOTOSYNTHESIS AND CELLULAR RESPIRATION		
		PHOTOSYNTHESIS	CELLULAR RESPIRATION
Number of the second seco	Organelle for process	chloroplast	mitochondrion
	Reactants	CO ₂ and H ₂ O	sugars (C _e H ₁₂ O _e) and O ₂
	Electron transport chain	proteins within thylakoid membrane	proteins within inner mitochondrial membrane
HONORSONUY	Cycle of chemical reactions	Calvin cycle in stroma of chloroplasts builds sugar molecules	Krebs cycle in matrix of mitochondria breaks down carbon-based molecules
	Products	sugars (C ₆ H ₁₂ O ₆) and O ₂	CO ₂ and H ₂ O

IV. Concept 4.6: Fermentation

- a. Aerobic vs. Anaerobic
 - i. Aerobic:
 - ii. Anaerobic: _____
 - iii. Cellular respiration is ______- it requires oxygen in order to take place.

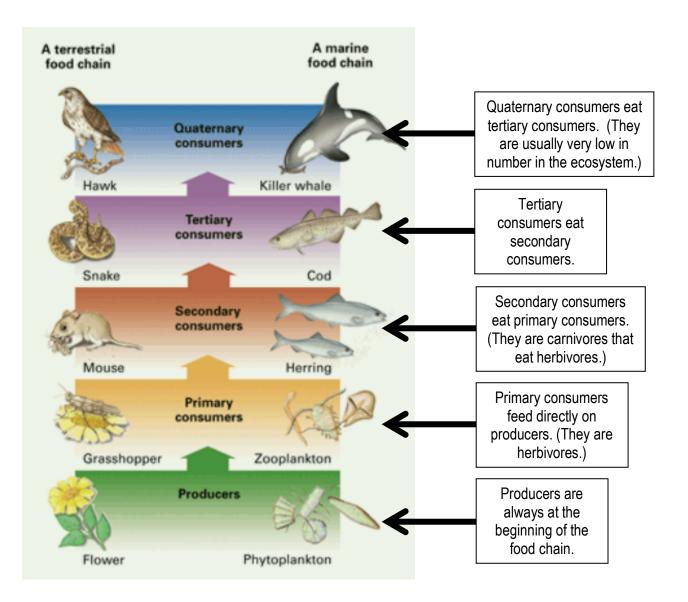
b. Fermentation


- i. Fermentation is an _____ process.
- ii. Fermentation:
- iii. Begins with glycolysis (the same as cellular respiration), giving the organism _____

- c. Importance of Fermentation in Humans
 - i. Humans can use fermentation as a back-up if they ______ than what they get from cellular respiration.

d. Examples

i. Lactic Acid Fermentation



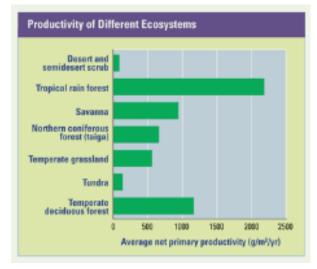
ii. Alcoholic Fermentation

GLYCOLYS	IS	ALCOHOLIC FERMENTATION
25 ADP 3	2 ATP	
- MI	GGG	+ 2 CO2
Gaadaa	ĞĞĞ	GG
glucose	2 pyruvate	2 alcohol + 2 carbon dioxide

Chapter 13: Principles of Ecology

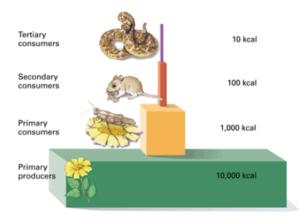
-	Concept	13.3: Energy in Ecosystems	
	a. Review Vocabulary		
	i	. Producers: convert the light energy from sunlight to the chemical energy of organic compounds	
	ii	. Consumers: obtain chemical energy by feeding on producers or other consumers	
	iii	. Decomposers:	
	b. Autot	rophs	
	i	·	
	ii	. "Producer"	
	iii	. Examples: plants, algae, photosynthetic bacteria	
	c. Heter	otrophs	
	i	·	
	ii	. "Consumer" or "Decomposer"	
	iii	. Examples: humans, squirrels, jaguars, fungi, etc.	
II. Concept 13.4: Food Chains and Food Webs			
	a. Food	Chains	
	i	. Food chain:	
	ii	. Follows the connection between one producer and a single chain of consumers within an	
		ecosystem	
	iii	. Trophic level:	
	iv	. Energy flows up a food chain from the lowest trophic level to the highest	
	v	What types of consumers are there?	
		1. Herbivore:	
		2. Carnivore:	
		3. Omnivore:	
		4. Decomposer:	

- vi. (Omnivores, such as humans that eat both plants and animals, may be listed at different trophic levels in different food chains.)
- vii. Decomposers
 - 1. At each level, organisms produce waste and eventually die.
 - 2. Decomposers are _____

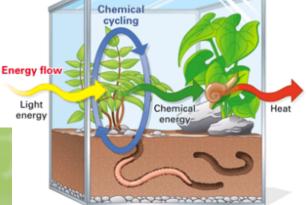

______. These are not always shown in diagrams of food chains, but all ecosystems include decomposers – they are vital to the ongoing recycling of chemicals in the ecosystem.

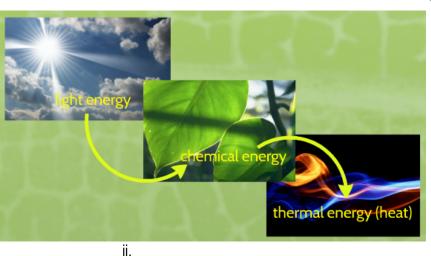
3. Examples: scavengers (earthworms, some rodents and insects, crayfish, catfish, and vultures), bacteria, and fungi

- b. Food Webs
 - i. Simple food chains do not show the complicated feeding relationships that exist in most ecosystems.
 - ii. Consumers have a ______ and feeding relationships can become ______
 - iii. The stability of any food web depends on the presence of producers, as they form the base of the food web.


III. Concept 13.6: Pyramid Models

- a. Productivity of Ecosystems
 - i. There is a limited amount of energy available in an ecosystem "energy budget." This budget influences the types and numbers of organisms in the ecosystem.
 - ii. Only ______ of sunlight reaching producers is captured for photosynthesis.
 - iii. The level of primary productivity sets the "energy budget."
 - 1. (This means that the productivity of producers determines how much energy available to higher trophic levels in an ecosystem.)
 - iv. Not all ecosystems are equal.


- b. Ecological Pyramids
 - i. At each step of the food web, energy is "spent" in three ways when it is transferred to higher levels (given to its consumer):
 - 1. Used as waste
 - 2. Used for energy for life processes
 - 3. Transformed into consumer's biomass (AKA growth)
 - ii. Example: Caterpillar eats a leaf.
 - 1. ____% of leaf energy is passed through the caterpillar as waste.
 - 2. ____% of leaf energy is used for caterpillar energy.
 - 3. ____% of leaf energy is used for caterpillar to grow.


- c. Energy Pyramids
 - i. Energy pyramid: _____
 - ii. Energy pyramids compare energy used by producers and other organisms on trophic levels.
 - 1. ____% of energy in each trophic level goes to the next.
 - 2. ____% is lost as heat.
 - a. Note: The amount of energy provided to support the higher trophic levels is significantly smaller than what is available to primary consumers.

IV. Concept 13.5: Cycling of Matter

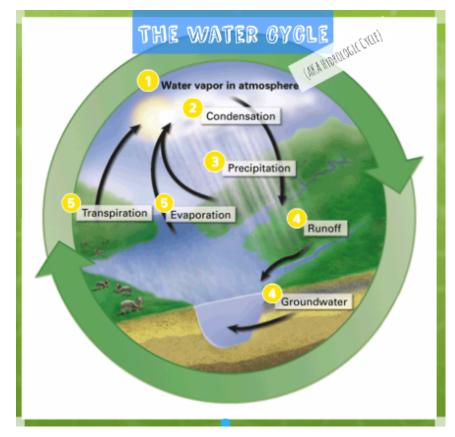
- a. Energy Flow and Chemical Cycling
 - i. As living things use chemical energy, they release ______ in the form of heat to their surroundings.

____ within an ecosystem - it flows through it

and out! (Producers must continue to receive energy as input for the ecosystem to survive.)

iii.

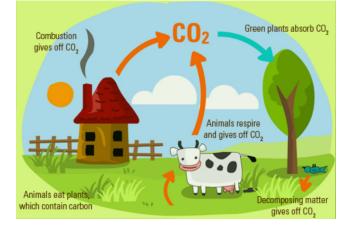
b. The Basic Pattern of Chemical Cycles

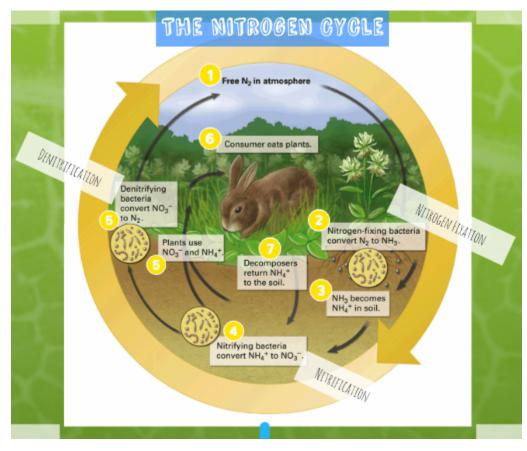

- i. Unlike energy, _____
- ii. Chemical cycles involve three steps:
 - 1. Producers make organic compounds by using chemicals from the non-living environment.
 - 2. Consumers eat these producers using some of their own chemicals and the producer's chemicals and release some back into the environment as waste.
 - 3. Decomposers break down dead producers and consumers supplying the soil, water, and air with the chemicals from detritus in an inorganic (non-living) form.
- iii. Producers then use these inorganic components to restart the cycle.

c. Biogeochemcial Cycles

- i. Biogeochemical cycle:
- ii. Cycles we will study:

1.	
2.	
3.	
4.	


iii. The Water Cycle


iv. The Carbon and Oxygen Cycle

- v. The Oxygen Cycle
 - Oxygen cycles indirectly through an ecosystem by the cycling of other nutrients.
- vi. Carbon Cycle
 - Carbon is emitted by the burning of fossil fuels. Some carbon is stored for long periods of time in areas called carbon sinks.

- vii. The Nitrogen Cycle
 - 1. ____% of atmosphere is nitrogen gas.
 - Some bacteria convert ______ through a process called ______. Ammonia released into the soil is transformed into ammonium.
 - 3. Nitrifying bacteria change the ______ through a process called ______.
 - 4. Nitrogen moves through the food web and returns to the soil during decomposition.

