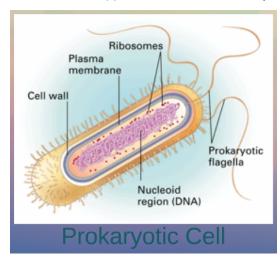
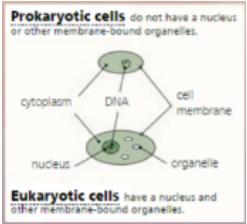
Name:	Date:	Block:

Guided Notes

Unit 2: Cells

Chapter 3: Cell Structure and Function

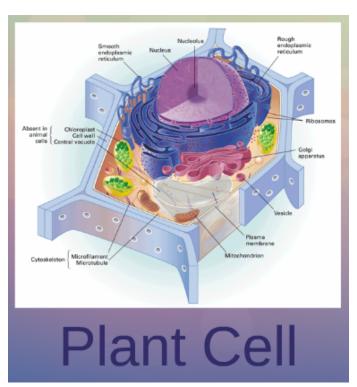

- I. Concept 3.1: Cell Theory Cells are the basic unit of life.
 - a. The Cell Theory

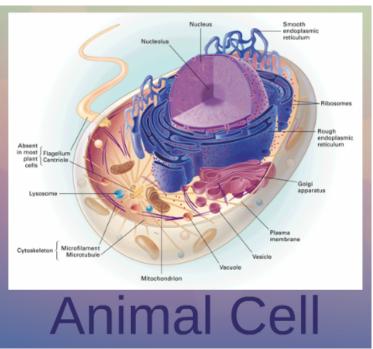

i.	
ii.	
iii.	

- b. Parts of a Compound Light Microscope
 - i. Refer to the Prezi and any relevant labs for information.
- c. Prokaryotic Cells vs. Eukaryotic Cells
 - i. prokaryotic cells: _____ and most other organelles; its DNA is concentrated in a "nucleoid" region (_____ and archaea cells)
 - ii. eukaryotic cells:

surrounded by its own membrane and other internal organelles bound by membranes (protists, fungi, . and)

1. These cells appear later in Earth's history.

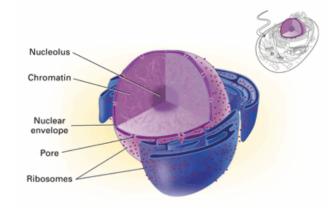




d. Overview of Animal and Plant Cells

i.	Organe	nelle:	
ii.	Animal	al and plant cells have many similarities	and differences from one another.
iii.	Main S	Similarities	
	1.	·	: defines the boundary of the cell and
		regulates the traffic of chemicals bet	ween the cell and its surroundings
	2.	·	: houses the cell's genetic material in the form
		of DNA	
	3.	·	: the entire region of the cell between the
		nucleus and the plasma membrane (consists of various organelles suspended in fluid)
iv.	Main D	Differences	
	1.	·	: (in plant cells only) the organelle in which
		photosynthesis occurs	
	2.		: (in plant cells only) encases the plant cell;

provides protection to plant cell and maintains its shape

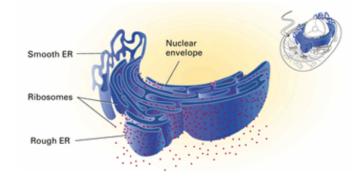


II. Concept 3.2: Cell Organelles – Eukaryotic cells share many similarities.

a. Nucleus

ii. Structure

- Nuclear envelope: membrane that surrounds the nucleus (works like the cell membrane but just for the nucleus)
- Nucleolus: contains the material to make ribosomes

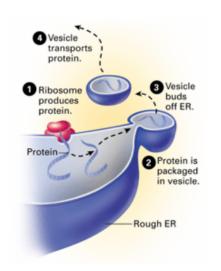


b. Ribosomes

i.	Function:	

ii. Location

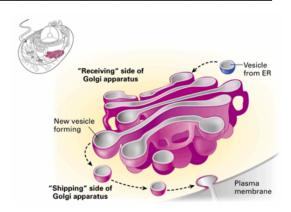
 some ribosomes are attached to the rough ER; others are freely suspended in the cytoplasm



c. Endoplasmic Reticulum

i. Function:	
--------------	--

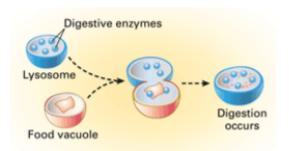
ii. Two Types


- rough ER: "rough" because ribosomes attach here; ribosomes make proteins and release them into the rough ER, then the rough ER creates vesicle of protein and sends it out to its destination in the cell
- smooth ER: "smooth" because there are no ribosomes here; builds lipids and contains enzymes to help with cell functions

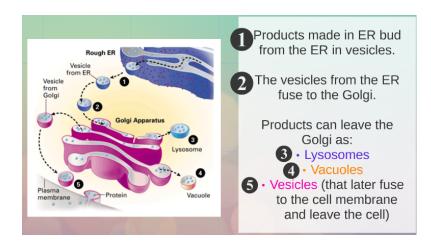
d.	Golgi	Apparatus
u.	Oolgi	/ ipparatus

I.	Function:	

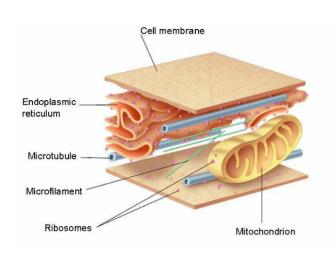
- 1. One side receives vesicles from the ER.
- 2. The ER product is refined and modified.
- The opposite end ships the finished product out to the cell or outside of the cell (exocytosis).



e. Vacuoles


- i. Two Types
 - 1. Animal Cell Vacuole: _____
 - 2. Plant Cell Vacuole: _____

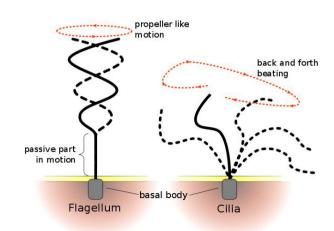
f. Lysosomes


- i. Functions
 - Contain _____ that can break down

- 2. Fuse with _____ and expose the nutrients to enzymes that digest them
- 3. Destroy ______; engulf and digest damaged organelles to be recycled
- g. The Endomembrane System

h.	Chlorop	olasts				laner	
	i.	Function	on:		Outer	Inner membrane	P
	ii.	and co	ucture allows for it to trap light energy nvert it to chemical energy.)	Disks			
	iii.	Locatio	on:		Fluid-filled space		
i.	Mitocho	ondria					
	i.	Function	on:				
	ii.	ATP: th	ne main energy source that cells use fo	r most of			Salla
		their w	ork				
	iii.	the inn	er membrane folds allow for the mitoch	ondria to			
		increas	se the surface area where cellular respi	ration can	Outer membrane	Inner Folds membrane	Fluid within inner membrane
		occur (more folds = more ATP production)		00		
	iv.	Location	on:			A Charles	
j.	Cytosk	eleton: N	Microfilaments and Microtubules				
	i.	Function	on:				
				doe	s not keep t	he same struc	ture all the
		time, b	ut works as the skeleton of the cell				
	ii.	Structu	ıre				
		1.	made of two types of fibers:		(s	traight, hollow	tubes of
			proteins) and	(thin	ner, solid ro	ds of protein)	

k. Cytoskeleton: Flagella and Cilia


: Functions			
i. Function:			

ii. Flagella

•

iii. Cilia

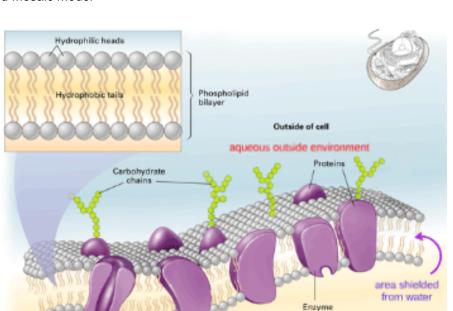
1. _____

I. Cell Coordination

- i. Remember... None of the cell's organelles work alone.
- ii. "The cooperation of cellular organelles makes a cell a living unit that is greater than the sum of its parts."

III. Concept 3.3: Cell Membrane – The cell membrane is a barrier that separates a cell from the external environment. Phospholipid molecule

Hydrophilic


Simplified representation

Space-filling model

- a. Cell Membrane Structure
 - i. The membrane of a cell is mostly _____
 - ii. What do you remember about lipids?

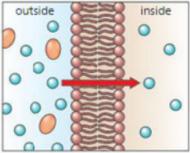
Transport

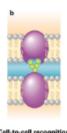
- iii. They are _____
- b. Fluid Mosaic Model

- c. Selectively Permeable
 - i. Selective permeability: _____

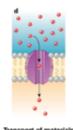
Inside of cell (cytoplasm) aqueous cytoplasm

ii. The cell membrane is selectively permeable – meaning it can allow molecules to enter, while keeping other molecules out. This allows the cell to maintain _______.




FIGURE 3.2 A selectively permeable membrane allows some, but not all, molecules to cross.

			_	
d	I\/l△r	nbran	△ Pro	ntaine


 Proteins in the cell membrane perform the membrane's specific functions.

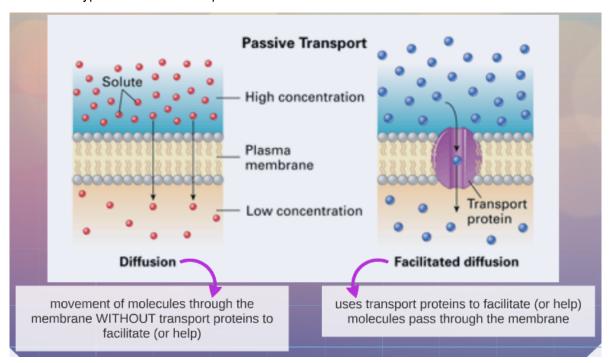
 M

Enzyme activity

ii. Proteins will:

leins wiii.		
1.		

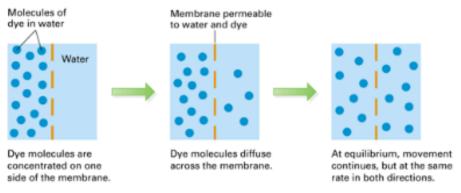
)			
)			

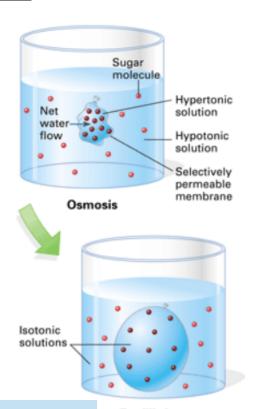

3.

IV. Concept 3.4: Diffusion and Osmosis – Materials move across membranes because of concentration differences.

a. Passive Transport

i.	Passive transport:	


ii. 2 Types of Passive Transport


Di	Diffu	Diffusi	Diffusio

i.	Diffusion:	
	•	

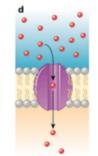
ii. Concentration is the number of molecules of a substance in a given volume.


- iii. Concentration gradient: _____
- iv. When there is equal movement in both directions across a membrane (meaning the crowded areas are equally crowded), _______ is reached.
- c. Osmosis
 - i. Osmosis:
 - ii. Hypertonic: the solution with the higher concentration of a solute
 - iii. Hypotonic: the solution with the lower solute concentration
 - iv. Isotonic: solutions in which the concentrations of the solute are equal

Osmosis is the diffusion of water across a semipermeable membrane from an area of higher water concentration to an area of lower water concentration.

A solution is isotonic to a cell if it has the same concentration of solutes as the cell. Equal amounts of water enter and exit the cell, so its size stays constant.

A hypertonic solution has more solutes than a cell. Overall, more water exits a cell in hypertonic solution, causing the cell to shrivel or even die.

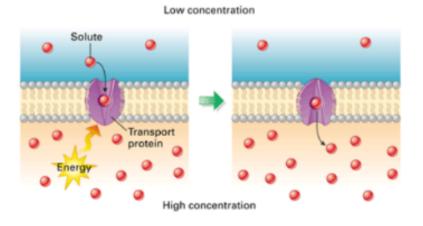


A hypotonic solution has fewer solutes than a cell. Overall, more water enters a cell in hypotonic solution, causing the cell to expand or even burst.

Equilibrium

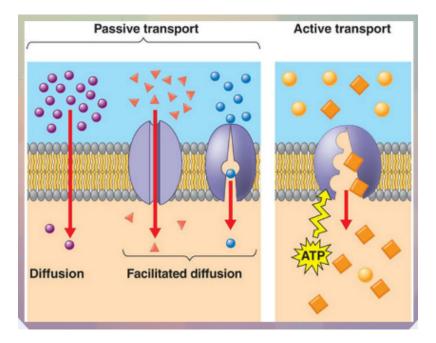
	_				
М	F 2€	ilitate	וואב	144116	nois
u.	1 01	אוווומוד	7U D	mu	ווטוכ

Facilitated diffusion:	

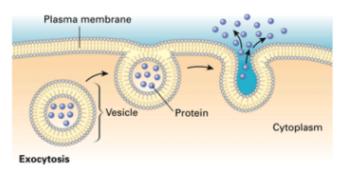


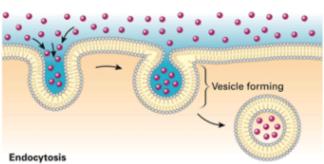
ii. Proteins make it easier for molecules to enter or exit, but the process is still passive transport, as no energy is being used.

Transport of materials


V. Concept 3.5: Active Transport, Endocytosis, and Exocytosis – Cells use energy to transport materials that cannot diffuse across a membrane.

a. Active Transport




iii. Active Transport: _____

b. Overview: Difference Between Passive and Active Transport

- c. Endocytosis vs. Exocytosis
 - i. Vesicles: _____
 - ii. Exocytosis: a vesicle fuses with the membrane and spills its contents _____ the cell (how a protein product is exported out of the cell)
 - iii. Endocytosis: the reverse of exocytosis vesicles bud _____ from the membrane (how food particles are ingested)

